
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 1

A Reinforcement Learning Approach to
Autonomous Decision Making of Intelligent

Vehicles on Highways
Xin Xu , Senior Member, IEEE, Lei Zuo, Xin Li, Lilin Qian, Junkai Ren, and Zhenping Sun

Abstract—Autonomous decision making is a critical and dif-
ficult task for intelligent vehicles in dynamic transportation
environments. In this paper, a reinforcement learning approach
with value function approximation and feature learning is
proposed for autonomous decision making of intelligent vehicles
on highways. In the proposed approach, the sequential decision
making problem for lane changing and overtaking is modeled as
a Markov decision process with multiple goals, including safety,
speediness, smoothness, etc. In order to learn optimized policies
for autonomous decision-making, a multiobjective approximate
policy iteration (MO-API) algorithm is presented. The features
for value function approximation are learned in a data-driven
way, where sparse kernel-based features or manifold-based fea-
tures can be constructed based on data samples. Compared
with previous RL algorithms such as multiobjective Q-learning,
the MO-API approach uses data-driven feature representation
for value and policy approximation so that better learning effi-
ciency can be achieved. A highway simulation environment using
a 14 degree-of-freedom vehicle dynamics model was established
to generate training data and test the performance of different
decision-making methods for intelligent vehicles on highways.
The results illustrate the advantages of the proposed MO-API
method under different traffic conditions. Furthermore, we also
tested the learned decision policy on a real autonomous vehicle
to implement overtaking decision and control under normal traf-
fic on highways. The experimental results also demonstrate the
effectiveness of the proposed method.

Index Terms—Autonomous decision-making, intelligent driv-
ing vehicles, Markov decision processes (MDPs), multiobjective,
reinforcement learning (RL), value function approximation.

I. INTRODUCTION

OVER the past decade, traffic safety and environmen-
tal pollution caused by car consumption have become

a serious problem in the global world. As a result, the devel-
opment of intelligent vehicles has been considered as an
important solution to the above problem and drawn world-wide
interests [1]–[6]. The objective of intelligent vehicles is to use

Manuscript received October 17, 2017; revised March 23, 2018; accepted
August 18, 2018. This work was supported by the National Natural Science
Foundation of China under Grant 61751311, Grant U1564214, and Grant
61611540348. This paper was recommended by Associate Editor Z. Liu.
(Corresponding author: Xin Xu.)

The authors are with the Institute of Unmanned Systems, College
of Intelligence Science and Technology, National University of Defense
Technology, Changsha 410073, China (e-mail: xinxu@nudt.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2018.2870983

intelligent sensing, decision and control techniques in driving
tasks to make road transportation safer, more efficient, and
more sustainable [7]. An intelligent vehicle system consists of
several functional modules, such as sensing and map-building,
decision making, path planning, and motion control. In par-
ticular, the autonomous decision making module is one of the
most critical modules, which can enable intelligent vehicles
to choose appropriate driving maneuvers, like changing lanes,
overtaking other vehicles [8]–[10], etc. Due to the complex-
ity and uncertainty of real-world traffic, to realize autonomous
decision making of intelligent vehicles is still very challenging.

Until now, various efforts have been devoted to address the
decision-making problem for intelligent vehicles. In general,
previous decision making approaches for intelligent vehicles
can be divided into three classes. The first class is rule-
based decision making based on expert systems or fuzzy
logic [12]–[14]. Niehaus and Stengel [1] proposed a rule-
based decision system for intelligent vehicles on freeways.
In this system, the worst-case decision making method
was used to deal with the uncertainties in decision-making.
In [12] and [13], a prediction and cost function-based algo-
rithm (PCB) was proposed to achieve highway driving for
autonomous vehicles. In the PCB algorithm, a prediction
engine was built to estimate the intentions of surrounding
vehicles and a cost function library was used to find an
appropriate driving behavior. Pérez et al. [14] proposed a deci-
sion approach using fuzzy logic for autonomous overtaking
behaviors. Although rule-based decision methods are easy to
implement, they usually require lots of prior knowledge and
are not robust and adaptive to different traffic situations.

The second class of decision making methods make use of
probabilistic models to deal with uncertainties [4], [7], [15].
Ulbrich and Maurer [9] proposed a probabilistic online lane-
change decision framework for automatic driving on highways,
which can model uncertainties in the lane change decision
making process. Schubert [7] and Schubert and Wanielik [15]
proposed a decision making approach based on Bayesian
networks to consider the uncertainty from perception to the
decision stage. However, it is difficult for Bayesian network
models to be adaptive to complex hybrid models and dynamic
decision tasks.

The third class of decision-making approaches employs
various machine learning algorithms to establish decision
functions based on observation data. Although supervised
learning can be used to learn decision policies by using

2168-2216 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3238-745X

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

human experiences, it is difficult to collect enough labeled
data from skilled drivers. As an important class of machine
learning methods, reinforcement learning (RL) [16], [17] is
a framework of solving sequential decision making problems
in a self-learning style. One advantage of RL methods is
that they can learn optimized policies without much model
information. In addition, an RL agent can learn an optimal
or near-optimal policy by interacting with the environment.
In order to design overtaking policies, a multigoal decision
method based on tabular RL called Q-learning (QL) was
proposed in [18] and [19]. However, the learning efficiency
and generalization ability of QL have been shown to be
low and function approximation in RL needs to be studied.
Zheng et al. [20] developed a decision making method based
on least-squares policy iteration (LSPI) [21] for autonomous
driving but only single decision objective and simple traf-
fic scenarios were considered. In addition, previous works on
RL-based decision making [20], [41] have not been tested in
real autonomous vehicles.

In this paper, we present a novel RL approach with value
function approximation and feature learning for autonomous
decision making of intelligent vehicles on highways. First,
we model the driving decision making problem as a Markov
decision process (MDP). Different performance measures in
driving decisions are considered, including safety, smooth-
ness, and speediness. Two different kinds of reward functions
are designed in the MDP. One combined reward func-
tion is designed for single objective RL methods and the
other considers different objectives separately. To learn opti-
mized policies, a multiobjective approximate policy iteration
(MO-API) algorithm is presented. The features for value func-
tion approximation are learned in a data-driven way, where
sparse kernel-based features or manifold-based features can
be constructed based on data samples.

Compared with previous RL methods such as multiobjective
QL, the proposed MO-API algorithm uses data-driven fea-
ture representation for value and policy approximation so that
better learning efficiency can be achieved. A highway simula-
tion environment using a 14 degree-of-freedom (DOF) vehicle
dynamics model was established to generate training data
and test the performance of different decision-making meth-
ods for intelligent vehicles on highways. The results illustrate
the advantages of the proposed MO-API method under differ-
ent traffic conditions. Furthermore, we also tested the learned
decision policy on a real autonomous vehicle to implement
overtaking decision and control under normal traffic on high-
ways. The real-time experimental results also demonstrate the
effectiveness of the proposed method.

The main contributions of this paper can be summarized as
follows.

1) We present an MO-API algorithm, where the features
for value function approximation are learned in a data-
driven way. Instead of using tabular representations or
hand-crafted features, the proposed approach can use
sparse kernel-based features or manifold-based features
that are learned from data samples.

2) We established a highway simulation environment using
a 14 DOF vehicle dynamics model to generate training

data samples offline and test the performance of dif-
ferent decision-making methods for intelligent vehicles
on highways. The results illustrate the advantages of
the proposed MO-API method under different traffic
conditions.

3) The learned decision policy was tested on an intelli-
gent driving vehicle to implement real-time overtaking
decision under real traffic on highways. The experi-
mental results also demonstrate the effectiveness of the
proposed method.

The rest of this paper is organized as follows. Section II
provides some background information about the MDP, RL,
and approximate policy iteration (API). Section III presents the
details of the MO-API approach for solving the autonomous
decision-making problem of intelligent vehicles, including the
description of the overtaking problem, the formulation of the
MDP model, and the MO-API algorithm with feature learning.
In Section IV, the simulation environment is introduced and
the simulation results are given. Moreover, real-time decision-
making experiments on the HQ-3 autonomous vehicle were
also conducted. Finally, Section V draws the conclusion and
suggests the future work.

II. BACKGROUND AND RELATED WORK

A. Markov Decision Process

The MDP is a fundamental formulation for RL prob-
lems [16], [21], [23]. An MDP is defined by a tuple
{X, A, P, R}, where X is the state space, A is the action space,
and R is the reward function. P is the transition model of
the MDP. A policy π is a function mapping from the state
space to the action space π : X→A, which is used to select
actions for every state. The performance of a given policy π
in a state x is defined in terms of the expected future rewards.
The expected total reward is called the state-value function,
which is defined as

Vπ (x) = Eπ

[∞∑
i=0

γ iri|x0 = x

]
(1)

where γ is the discount factor.
There is another definition of value functions for a given

policy π , which is called the action-value function. The action-
value function is defined as the expected total reward when
taking action a in state x and following the policy π thereafter:

Qπ (x, a) = Eπ

[∞∑
i=0

γ iri|x0 = x, a0 = a

]
. (2)

Since the value functions indicate how good the policy is,
they can be employed to find the optimal actions in MDPs. In
such cases, the optimal value function is computed at first, and
then an optimal action can be determined by a greedy strategy
accordingly

π∗(x) = arg max
a

Q∗(x, a). (3)

B. Multiobjective Reinforcement Learning

Multiobjective optimization (MOO) problems are very pop-
ular in a variety of fields such as industries, economics, and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XU et al.: RL APPROACH TO AUTONOMOUS DECISION MAKING OF INTELLIGENT VEHICLES ON HIGHWAYS 3

Environment

Agent

Action Rewardr1 r2 … rk State

Fig. 1. Diagram of MORL.

so on [24]–[27]. Since the objectives in MOO are usually con-
flicting, it is hard to simultaneously optimize each objective.
Thus, it is necessary to find an appropriate tradeoff between
the conflicting objectives [28].

Similar to MOO problems, multiobjective RL (MORL) tries
to solve sequential decision making problems with multiple
objectives by interacting with the environment [28], [29]. In
traditional RL, there is only one objective function that needs
to be optimized, which is computed based on one single reward
from the environment.

In MORL, the learning agent receives more than one reward
from the environment at each step according to different objec-
tives, as shown in Fig. 1. Assume k rewards ri (i = 1, 2, . . . , k)
are received by the agent at each step, then there are k differ-
ent corresponding objectives. Given a certain policy π , there
is one action-value function like (2) for each objective. In gen-
eral, some of the objectives are conflicting. Thus, MORL and
MOO has some common issues, like the preferences of the
objectives, the representation of preferences, and the approxi-
mation of the Pareto front. The task of MORL is to solve the
sequential decision-making problems with multiple objectives
by learning from the experiences or samples.

C. Approximate Policy Iteration

Policy iteration is an iterative procedure of discovering
the optimal policy for a given MDP with known model
information [30]. However, in many practical problems, the
state transition model and the reward function of MDPs are
usually unknown. In such cases, API has been studied, which
is based on the samples from the actual process or a generative
model of the process [17], [21], [22], [31], [32].

In RL, API algorithms aim at finding the optimal or near-
optimal policy using samples generated during the interaction
between the learning system and the environment. API mainly
consists of two interactive parts. One is called policy evalua-
tion, known as the critic, computing the action-value function
of the current policy using temporal difference learning which
usually employs projection-based methods for batch-mode
learning. The other is called policy improvement, also known
as the actor, evaluating all actions for every state to discover
possible improvements of the current policy. Fig. 2 shows
a diagram of API and the relations between the different parts.

There are two classes of API methods with different value
function approximation architectures: linear and nonlinear.
The LSPI algorithm is one popular API algorithm using

Fig. 2. Flowchart of approximate policy iteration [21].

linear architectures [21], which uses the least-squares tempo-
ral difference algorithm [33] for policy evaluation. The basis
function construction is a key issue in LSPI, which will
greatly influence its performance. The kernel LSPI method
uses sparse kernel-based features to improve the performance
of API [31]. Mahadevan and Maggioni [32] proposed the
manifold-based features for value function approximation and
designed an improved LSPI approach called representation
policy iteration (RPI). There are also other efforts devoted
to the improvements of API methods [17], [34], [35]. In this
paper, we will design and test multiobjective API methods to
solve the autonomous decision-making problem for intelligent
vehicles.

III. MO-API APPROACH FOR DECISION-MAKING

Due to the complexity and uncertainties of vehicle dynamics
and dynamic traffic, it is very difficult for intelligent vehicles
to find optimal driving decisions. In this paper, we use RL
approaches with VFA and feature learning to deal with this
challenge. The RL approach can be model-free and learn from
simulated observation samples which are obtained during the
interaction with the environment. Moreover, the proposed RL
approach has the capability of dealing with uncertainties and
complexities of the environment.

A. Decision-Making Task

An intelligent vehicle needs to complete different driving
tasks like lane following, lane changing, and overtaking in
dynamic, complex environments [19]. For this purpose, the
intelligent vehicles must have the ability of making appropri-
ate driving decisions in different traffic situations. Particularly,
deciding when to perform the overtaking behavior is very
challenging because of the uncertainties and complexities in
the traffic. Fig. 3 shows the process of a typical overtaking
behavior in two-lane environments. In general, the overtaking
process usually includes three stages.

1) Changing lane to the left [Fig. 3(a)].
2) Driving on the left lane (fast speed lane) and passing

the vehicle in the adjacent lane [Fig. 3(b)].
3) Changing back from the left lane to the right lane

[Fig. 3(c)].
In the overtaking problem, we focus on whether the vehicle
can make correct overtaking decisions and in what way we

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

(a)

(b)

(c)

Fig. 3. Three stages in a typical overtaking behavior, the yellow one is the
intelligent vehicle and the blue is the slower vehicle. (a) Changing to the left
lane. (b) Overtaking the slower vehicle. (c) Changing back to the right lane.

Left

Right

Fig. 4. Two-lane environment. The yellow one is the intelligent vehicle.

evaluate the overtaking process. Three objectives have been
considered, i.e., safety, speediness, and smoothness. Based on
the three objectives, the driving decision-making process is
modeled as a multiobjective MDP (MOMDP).

Note that it is necessary to consider the priority of different
objectives according to different preferences. For example, in
some cases, the speediness is prior to the smoothness. In some
situations, different objectives may be conflicting. However,
the safety objective must take the first priority over other
objectives. Based on the MOMDP, the MO-API approach will
be developed to solve the overtaking decision problem.

As shown in Fig. 4, it is assumed that one direction of the
highway consists of two lanes, i.e., the left lane for overtak-
ing and the right lane for normal driving. The states of the
environmental vehicles around the intelligent vehicle can be
measured. As shown in Fig. 4, df maxt and dbmax stand for the
maximum perception distances of the front sensors and the
backward sensors, respectively. The vehicles which fall in this
range will be sensed by the intelligent vehicle. d1 denotes the
distance between the intelligent vehicle and the nearest vehi-
cle in the forward direction, and v1 is the velocity of the front
vehicle. d2 denotes the distance between the intelligent vehicle
and the nearest backward vehicle.

B. Dynamics Model of the HQ-3 Autonomous Vehicle

In this paper, the dynamics of an autonomous HQ-3 vehicle
platform will be established before the simulation and policy

Fig. 5. Schematic of the vehicle kinematics.

learning process. The HQ-3 vehicle was equipped with a cus-
tomized autonomous driving system. The vehicle dynamics
model has 14 DOF and is constructed based on the real data of
the vehicle [20].

Fig. 5 shows the kinematics model of the vehicle. When the
vehicle is running around the instantaneous turn center, the
relationships between the attitude angle of the vehicle (δfm)
and the steering angles of the front wheels (δs) can be defined
as follows:

δs = α · δfm (4)⎧⎨
⎩
δfl = arctan

L tan δfm
L−lf tan δfm

δfr = arctan
L tan δfm

L+lf tan δfm

(5)

where δfr denotes the equivalent angle of the right front wheel
and δf l is the left one. lf stands for the vertical distance from
the front wheels to the center of mass and L is the distance
between the front axle and the rear axle. α is a constant.

The rolling motion model of the wheels is

Iwω̇ = Tt − Tb − fxRl (6)

where Iw is the inertia moment of the wheel, Tt is the driving
torque, Tb is the braking torque, fx is the longitudinal force
of the wheel, and Rl is the load radius. Then, the input on
the steering wheel can be mapped to the equivalent angle of
each front wheel. Moreover, the overall force in the dynamics
model can be obtained by

F = T

⎡
⎣ 0

0
δfr

⎤
⎦Ffl + T

⎡
⎣ 0

0
δfr

⎤
⎦Ffr + Frl + Frr + Fwind + G (7)

where T is the coordinate transformation matrix, and
Ffl, Ffr, Frl, and Frr denote the stresses from the four wheels,
respectively. G is the gravity and Fwind is the resistance
from air

Fwind = [−fwind 0 0
]′ (8)

fwind = CwAv2g/16 (9)

where g is the acceleration of gravity, A is the front cross-
sectional area of the vehicle, and v is the relative velocity of the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XU et al.: RL APPROACH TO AUTONOMOUS DECISION MAKING OF INTELLIGENT VEHICLES ON HIGHWAYS 5

vehicle with respect to the wind. Cw is a constant coefficient
and set to be 0.35 in this paper.

Let vl and ψ rb denote the velocity in the local coordinates
and the attitude angles in the road coordinates, respectively.
The dynamics model of the vehicle can be described as
follows:

dvl

dt
= F/mc + ψ̇rb × vl (10)

where mc is the total mass of the vehicle and F is the total
force determined in (7).

C. MDP Modeling of the Overtaking Behavior

In a simple case, the state set of the MDP can be defined
as x = [l, va, vf , v1, d1], where l denotes the current lane of
the intelligent vehicle. If the intelligent vehicle is on the left
lane, l = 1, and if the intelligent vehicle is fully on the right
lane, l = 2. When the vehicle is changing from one lane to
the other lane, the value of l is not changed until the lane
changing process is completed. va and vf denote the current
velocity and the expected velocity of the intelligent vehicle
during lane keeping, respectively. d1 represents the relative
distance between the intelligent vehicle and the nearest front
vehicle, and v1 stands for the velocity of the nearest front
vehicle. As we have a general limitation of df max = d1 = 0,
when there is no vehicle in the sensing range, we assume that
d1 = df max and v1 = va. In the MDP model, we define two
macro actions {a1, a2} to accomplish an overtaking process,
one action (a1 = 1) is to keep the vehicle in or move to the
right lane and the other action (a2 = 2) is to keep the vehicle
on or to move to the left lane.

We consider two kinds of reward models in this paper. The
first is a combined model with one scalar reward function and
the second is a model with multiple reward functions which
stand for different objectives. The scalar reward function is
defined as

r =

⎧⎪⎪⎨
⎪⎪⎩

−300
−150
va − vf − 0.1z − 0.2
va − vf − 0.1z

c = 1
c = 0 & z > Z
c = 0 & z ≤ Z & l = 2
c = 0 & z ≤ Z & l = 1

(11)

where z denotes the normalized value of acceleration, Z is
a threshold for measuring the smoothness, and c is a flag which
indicates a situation with a high possibility of collisions.

In the single reward function model, we consider safety,
smoothness and speediness comprehensively. c is a flag for
safety and the vehicle will get the minimum reward when
c = 1. And when the safety objective is obtained, vd will
prevent the intelligent vehicle from changing the velocity
abruptly. In addition, the third and the fourth conditions in (11)
show that a higher velocity will get a higher reward as well.

Although the single reward model provides a solution to
evaluate an overtaking process, it could not efficiently and flex-
ibly realize the tradeoff among different objectives. Therefore,

the MOMDP model has the following reward vector:

�r =
{

r(1), r(2), r(3)
}

r(1) = rsafe =
{−1

0
if c = 1

else

r(2) = rspeed =

⎧⎪⎪⎨
⎪⎪⎩

va − vf

va − vf − 0.2
0
−0.2

va < vf & l = 1
va < vf & l = 2
va ≥ vf & l = 1
va ≥ vf & l = 2

r(3) = rsmooth =
{

0
−z

,

,

z < Z
else

(12)

where rsafe, rspeed, and rsmooth represent evaluative feedbacks
based on the objectives of safety, speediness, and smoothness,
respectively. Since the three objectives can be optimized inde-
pendently, we can adjust the priority of the three objectives to
satisfy different driving preferences.

D. MORL Algorithm Based on API

Next, we will present the MO-API algorithm with data-
driven feature learning for value function approximation.
Suppose we have a total number of q objectives which corre-
spond to a reward vector as �r = {r1, r2, . . . , rq}. As shown in
Algorithm 1, the MO-API algorithm is designed to learn an
approximation of the optimal action-value function Qi(x, a)
for different objectives ri(i = 1, 2, . . . , q). In MO-API, the
action-value function Qi(x, a) (i =1, 2, . . . , q) is approximated
by a linear weighted combination of n basis functions

Q̂i(x, a) = �φT(x, a)�wi (13)

where �wi = (w1,w2, . . . ,wn)
T is the weight vector for objec-

tive i and �φ(x, a) is the feature vector, which is denoted by

�φ(x, a) = (φ1(x, a), φ2(x, a), . . . , φn(x, a))T . (14)

In order to determine an appropriate set of feature vectors
for value function approximation, feature learning approaches
can be employed by making use of the samples. In MO-API,
the first two steps implement the sampling and subsampling
procedures, which obtain the sample set D = {(xi, ai, �ri,
x′

i, a′
i) |i = 1, 2, . . . ,m} and a subset Ds ⊂ D, respectively.

Based on the subset of samples, two strategies can be used
for learn the features for value function approximation. One
strategy is to use kernel-based feature learning for VFA and
the other is manifold-based feature construction using graph
Laplacian. For kernel-based feature learning, we adopt the
sparse kernel learning method based on approximately lin-
ear dependence (ALD) analysis [31]. The ALD-based kernel
sparsification approach implements an iterative process which
constructs a kernel dictionary KD incrementally. Suppose
a subset of samples Ds = {xi} (i = 1, 2, . . . , n) are used to
construct the kernel dictionary KD. Initially, KD only has one
element {x1}. The approximately linearly dependent condition
of a new feature vector (xt) is tested as follows [32]:

δt = min
c

∥∥∥∥∥∥
∑

j

cjφ
(
xj
)− φ(xt)

∥∥∥∥∥∥
2

≤ μ (15)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Algorithm 1 MO-API Algorithm
\\C: the number of clusters;
\\l: the number of basis functions.

1: Sampling:
Using the vehicle model and the simulated environment
to collect samples for learning. A set of samples D= {(si,
ai, �ri, si+1} is obtained by using an exploration policy.

2: Subsampling:
Selecting a subset of samples Ds using the C-means
clustering method.

3: Based on the subset of samples Ds, perform feature
learning for value function approximation.

4: For each objective j (j = 1, 2, . . . , q), learn a near-
optimal policy using the collected sample set {(si, ai,
�ri, s′

i, a′
i) }:

Loop until a termination criterion is satisfied:
(1) Policy evaluation:

wπj = (T(− γ	′))−1
	TRj

(2) Policy improvement:

πj(s) = arg max
a

φT(s, a)wπj

5: return a set of policies π j (j = 1, 2, . . . , q) correspond-
ing to the multiple objectives.

where c = [cj] and μ is a threshold parameter to determine
the approximation accuracy and the sparsity level.

Another way to learn smooth features for value func-
tion approximation is to use the graph Laplacian approach,
as studied in [32]. The graph Laplacian approach imple-
ments the feature learning process via the following
two steps.

1) Constructing an undirected graph G = (V, E, W) from
the subset of samples Ds, where V is the vertex set
consisting of all the elements in Ds, E is the edge
set that connect each pair of vertex, and W is the
weight matrix whose element wij are the weights of
the edges.

2) Computing the graph Laplacian L = D−W and calcu-
lating the m smoothest eigenvectors of L to form the
feature matrix as �φ(x) = [φ1(x), φ2(x), . . . , φl(x)]T .

For a sample x that does not belong to the graph point set V,
the feature vector can be computed by the Nystrõm extension
method. For more details, please refer to [24]. To approximate
the action-value functions of MDPs with continuous states and
m discrete actions, the above basis functions can be repeated
for each of the actions

�φ(x, a) =
[
I(a, a1) �φ(x), I(a, a2) �φ(x), . . . , I(a, an) �φ(x)

]
(16)

where I(a, aj) (j = 1, 2, . . . ,m) is an indicator function, i.e.,
if a = aj, I(a, aj) = 1, else I(a, aj) = 0.

In MO-API, after learning the features for VFA, the fol-
lowing procedure is used to estimate the weight vector wi

(j = 1, 2, . . . , q) of the optimal policy for each objective rj

Algorithm 2 DecisionFunction(x, pj, π j (j = 1, 2, . . . , q)

Input: x—the current state; pj—the weight for objective j;
π j—the policy learned for objective j. (j = 1, 2, . . . , q)

1. For each objective j, compute the greedy near-optimal
action:
aj = arg max

a
�φT(x, a)wπj (j = 1, 2, . . . , q)

End for
2. Perform weighted voting to determine the final decision

a = u

⎛
⎝ q∑

j=1

pjaj

⎞
⎠

where 0<pj<1, u(.) is a function that rounds the input
to the nearest integers toward infinity.

Output: a

(j = 1, 2, . . . , q). Let

	 =

⎛
⎜⎜⎜⎝
φT(x1, a1)

φT(x2, a2)
...

φT(xm, am)

⎞
⎟⎟⎟⎠	′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

φT
(

x
′
1, a′

1)
)

φT
(

x
′
2, a′

2)
)

...

φT
(

x
′
m, a′

m)
)

⎞
⎟⎟⎟⎟⎟⎟⎠

Ri =

⎛
⎜⎜⎜⎝

ri
1

ri
2
...

ri
m

⎞
⎟⎟⎟⎠
(17)

where D = {(xi, ai, �ri, x′
i, a′

i) |i = 1, 2, . . . ,m} is a set of col-
lected samples from an initial policy and �ri = {r1

i , r2
i , . . . , rq

i }
is the reward vector defined for multiple objectives.

Then, the weight for approximating the action-value func-
tion and the corresponding policy based on the greedy strategy
can be obtained as follows [22]:

{ �wi = (T
(
	− γ	′))−1

	TRi

πi(x) = arg max
a

φT(x, a)�wi
(i = 1, 2, . . . , q). (18)

The output of Algorithm 1 includes multiple weight vectors
which are used to approximate the value functions of differ-
ent rewards from multiple objectives. Then, a multiobjective
decision-making strategy will be used to choose the best
actions by considering all the objectives comprehensively.
Assume the m candidate actions are indexed by 1, 2, . . . ,m.
Algorithm 2 shows the decision function based on the learned
multiple policies π j (j = 1, 2, . . . , q). The output a of
Algorithm 2 is the index for the selected action.

The decision function described in Algorithm 2 uses the
multiple policies learned by Algorithm 1 and a weighted vot-
ing strategy for multiobjective decision-making. By specifying
different weights for each objective, we can realize different
preferences for varying situations. For example, we can spec-
ify a larger weight for safety at first and determine whether to
use a larger weight for speediness or smoothness. In the fol-
lowing simulation and experiments, two candidate weighting
priorities were considered, which include the speed first prior-
ity (SPFP) which considered speediness first, and smoothness
first priority (SMFP) which considered smoothness first.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XU et al.: RL APPROACH TO AUTONOMOUS DECISION MAKING OF INTELLIGENT VEHICLES ON HIGHWAYS 7

Fig. 6. Initial positions of the sampling process in the highway simulation
environment.

IV. SIMULATION AND EXPERIMENTAL RESULTS

The performance of the proposed RL-based decision-
making approach was evaluated both in simulation and experi-
ments in this section. The samples were collected offline based
on a highway simulation environment of the HQ-3 autonomous
vehicle introduced above. Then, the RL-based decision mod-
ule was trained using these samples and the learned policies
were tested and compared comprehensively in the simula-
tion environment. Furthermore, we also conducted real-time
decision-making and overtaking control experiments on the
autonomous HQ-3 vehicle to illustrate the effectiveness of the
proposed method.

A. Simulation Environment

The simulations were carried out in a two-lane highway
environment, as shown in Fig. 3. The width of each lane was
set as d = 5 m, and the maximum range of the front sensors
and the backward sensors were set as dfront = 150 m and
dback = 100 m, respectively. For RL methods, the discount
factor γ is 0.95. The maximum number of iterations is set to
be 1000 for all the algorithms.

In order to learn an appropriate overtaking strategy, the
agent was first trained in a set of samples with 10 000 episodes.
Let df denote the minimum distance of the front vehicles
in the other lane and db denote the minimum distance of
the backward vehicles. For a lane change behavior, a basic
safe condition can be determined by comparing df , db with
predefined safety thresholds D1 and D2. Then, in order to
reduce the state and decision complexity, the basic safe con-
dition for lane changing is determined by the following rule:

If df>D1 and db>D2
Basic_Lane_Change_Condition = true

Else
Basic_Lane_Change_Condition = False

End
Based on the above safety condition, in the sample-

collection process, only the nearest front vehicle was consid-
ered, and the initial positions of both vehicles were located in
the right lane, as shown in Fig. 6. Five measurement variables
were chosen as the input of the RL-based decision module:
{va, vf , v1, d1, action}, where va is the current velocity of the
intelligent vehicle, vf is the expected velocity of the intelligent
vehicle, v1 is the current velocity of vehicle 1, d1 is the dis-
tance between the intelligent vehicle and vehicle 1, and action
is the current action taken by the intelligent vehicle. In the
sampling process, one episode was defined as either the intel-
ligent vehicle enters into a dangerous situation or a maximum
sequence of 500 time steps has been simulated.

In this paper, we also designed an expert system with fixed
rules to realize decision-making and prevent collisions in the

Fig. 7. Surrounding vehicles considered in the expert system.

TABLE I
FORMULATION OF THE EXPERT DECISION STRATEGY

(a)

(b)

Fig. 8. Various traffic environments with different density values. “ ” rep-
resents the intelligent vehicle and “ ” stands for other vehicles. (a) μ = 10.
(b) μ = 5.

traffic. The expert system considered the relative distances
(d1–d4) and the velocities (v1–v4) of four nearest surrounding
vehicles, as shown in Fig. 7. In addition, the normal veloc-
ity vf during lane keeping was also considered in the expert
system. In the following simulations, the expert system was
not only used as the decision system for environmental vehi-
cles but also used in the autonomous vehicle as a nonlearning
method for performance comparison. The strategy definition
of the expert system was recorded in Table I.

To test the performance in different kinds of traffic flow,
we used a stochastic traffic model with a controllable traffic
density. Here, “stochastic” means that the initial states of other
vehicles in the traffic flow were generated randomly (with cer-
tain limitations). Fig. 8 showed a comparison of traffic models
in different traffic densities. The density determined the cur-
rent number of vehicles around the autonomous vehicle. The
density of traffic flow was represented by μ, which determined
the number of vehicles in the current 500-m range around the
intelligent vehicle.

B. Comparison Between Learning-Based Decision-Making
Methods and Traditional Rule-Based Methods

Learning-based decision-making methods can obtain opti-
mized policies for different state conditions. However, it is
difficult for traditional rule-based methods to be adaptive for

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

dynamic situations. In this part, single-objective QL and a class
of API algorithms called clustering-based RPI (C-RPI) were
used to learn decision rules for the intelligent vehicle. The
expert system with fixed rules defined in Table I was also
evaluated. Simulations were conducted under a series of traffic
density sequences (μ ∈ [5, 15]).

In the simulation, one intelligent vehicle is simulated with
different decision policies for performance testing. This intel-
ligent vehicle is called the testing vehicle. Other intelligent
vehicles are simulated with rule-based decision policies and
these vehicles are called the environmental vehicles. There are
several types of environmental vehicles which include cars,
trucks, buses, etc. Different types of environmental vehicles
have different expected velocities. In addition, for different
traffic conditions, different numbers of environmental vehicles
are generated.

1) Performance of RL Methods After Different Iterations:
In the following, the performance convergence of RL methods
will be tested. Since C-RPI and API algorithms can be viewed
as improved versions of batch mode QL with function approx-
imation, we choose the tabular QL algorithm to learn driving
policies and test the performance of different Q-tables after
different number of learning iterations. Here we chose three
iteration stages to generate the Q-tables respectively: the ini-
tial stage, the final stage and the “middle” stage. In the initial
stage, the initial Q-table was randomly assigned with a range
of [0, 100] and when QL was convergent, the final Q-table
was obtained. The middle stage was defined as

e(k) ≤
√

e(0) (19)

where e(j) (j = 0, 1, . . . , k) denotes the summed temporal-
difference error in iteration j.

The three Q-tables were tested in a traffic density sequence
with a range of 5 ≤ μ ≤ 15. The comparison result was shown
in Fig. 9. Fig. 9(a) showed that the overtaking policy based on
the final Q-table achieved the highest average velocity while
the policy from the initial Q-table obtained the lowest. The
curve of the middle-stage Q-table dropped immediately with
the increasing of traffic density, but the curve of the final
Q-table approximately kept the same in a low traffic density
(5 ≤ μ ≤ 7), and the decline only appeared when μ exceeded
7. This suggested that the policy from the final Q-table was less
affected by the change of traffic density. Fig. 9(b) showed the
minimum distance between the intelligent vehicle and other
vehicles in the driving process. Here the policy from the final
Q-table achieved the relatively better result while the result
from the initial Q-table is too close to the front vehicles to
ensure the safety. Thus, as the learning process continued, the
RL method can learn an optimized policy.

2) Comparison Between RL Methods and Expert System: In
the following, we will make performance comparisons between
two single-objective RL methods and the rule-based expert
system. QL and C-RPI were tested as two RL methods which
use tabular representations and value function approximation,
respectively. First, we compared the reward curves of the three
methods which were determined by the MDP model mentioned
in Section III. In this simulation, the intelligent vehicle drove
in a traffic flow with μ = 10 for 300 steps. The reward

(a)

(b)

Fig. 9. Performance convergence of QL. Performance improvement of QL in
terms of the (a) average velocity versus the traffic density and (b) minimum
vehicle distance versus the traffic density.

for each step and the accumulated value were both recorded.
In addition, we used the minimum relative distance, average
velocity, and accumulation of velocity changes to describe the
three objectives: 1) safety; 2) speediness; and 3) smoothness.
The simulations were conducted in the traffic environment
mentioned in Section IV-A with variable traffic densities. For
each decision-making method, we repeated the tests for 50 times
and the averaged values were used for comparison.

Fig. 10 shows the reward variations of the expert system,
QL, and the C-RPI method. It is illustrated that C-RPI
always obtain the highest reward value and the expert system
remained the lowest. From Fig. 11(a), we can see that the
intelligent vehicle using the policy learned by C-RPI has lower
velocities than the policy obtained by QL, while higher than
the policy obtained by the expert system. The accumulation of
velocity changes showed an opposite situation. In Fig. 11(c),
we found C-RPI obtained more appropriate vehicle distances
(around 50 m) than the other two methods in traffic densities
ranging from 5 to 11. In traffic conditions with higher traffic
densities, both C-RPI and expert rules prefer larger vehicle
distances than the policy obtained by QL.

Although the expert system method obtained the minimum
accumulation of velocity changes in most situations, it realized
the least number of overtaking actions, which is not suitable
for the speediness objective.

3) Performance Testing in Multilane Highway Simulation
Environment: In order to test the performance of the lane
changing policy learned by the proposed RL method, a multi-
lane highway simulation environment was also designed. The
three-lane highway environment model is shown in Fig. 12,
which includes a left lane, a middle lane, and a right lane.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XU et al.: RL APPROACH TO AUTONOMOUS DECISION MAKING OF INTELLIGENT VEHICLES ON HIGHWAYS 9

(a)

(b)

Fig. 10. Reward comparison between RL methods and the expert system.
Performance comparisons of different methods in terms of the (a) reward at
each step and (b) accumulative reward.

The initial position of the autonomous vehicle was set to
the right lane. The environmental vehicles were generated with
different types such as cars, trucks and buses randomly. The
initial states of these vehicles (including relative distances and
velocities) were generated randomly within certain limits. In
addition, the expected velocities of these vehicles were set
based on the vehicle’s type and were changed according to
the traffic conditions. The vehicle dynamics model and control
characteristics shown in Section III-B were also considered in
the simulation process.

The MDP state s of the decision-making module includes
the current lane l and the longitudinal speed v0 of the testing
vehicle, the velocities and distances of other environmental
vehicles. It can be formally defined as

s = [l, v0, v1, d1, v2, d2, v3, d3, v4, d4, v5, d5, v6, d6]. (20)

The action a of the MDP determines the target lane of the
testing intelligent vehicle. Since the highway environment has
three lanes, the action includes three elements which determine
the right lane, the middle lane and the left lane as the target
lane of the testing vehicle, respectively. The action set of the
MDP is formally defined as follows:

A =[1, 2, 3]. (21)

The reward function incorporates the requirements of safety,
the expected speed and traffic rules. In addition, the speediness
of the testing vehicle is also considered. Define c as a flag
which indicates a situation with a high possibility of colli-
sions. Then the reward function is defined as follows (ds is the

(a)

(b)

(c)

Fig. 11. Performance comparisons among different methods. (a) Average
velocity. (b) Variations of velocity changes. (c) Minimum distance.

Fig. 12. Schematic of the three-lane highway modeling.

safe distance):

r =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1000 c = 1
−10

∣∣l − l′
∣∣ > 1

−10 c = 0, l = 1, v0 < 60 km/h
−5 c = 0, l = 2, v0 < 90 km/h
−5 c = 0, l = 3, v0 < 110 km/h
−5 c = 0, d1 = dS, l �= l′
−|v0 − vfree| c = 0.

(22)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 13. Driving decision test in a three-lane traffic environment (red for
the autonomous vehicle and blue for environmental vehicles). The subplots
(a) to (h) show several successive lane-changing and overtaking behaviors of
the intelligent vehicle in a multi-lane highway environment.

Before the learning process, 12 000 samples were collected by
using a random action policy. For the API algorithm, we used the
kernel-based feature learning method to approximate the value
function. In particular, the multikernel feature learning approach
introduced in [43] was employed in the MO-API algorithm.
Three Gaussian kernels with different width parameters were
combined to approximate the value functions. The maximum
iteration number was set as 20, and the termination condition
for iteration err or is 10−5. After a series of iterations, an
optimized policy can be obtained for performance testing.

Fig. 13 shows the decision outputs of the testing vehicle
in the simulation environment. Fig. 13(a)–(c) shows that the
testing vehicle overtook the front vehicle by changing from
the right lane to the middle lane. Fig. 13(d)–(f) shows that
the testing vehicle overtakes other vehicles in the middle lane.
Fig. 13(g) and Fig. 13(h) illustrate that the testing vehicle
changes back to the middle lane. When the testing vehicle
satisfies the condition for changing lanes and the velocity is
lower than the expected velocity, it will change its lane and
accelerate to the expected velocity. Otherwise, the intelligent

(a)

(b)

(c)

Fig. 14. Performance statistics of MORL and SORL. (a) Average velocities.
(b) Variations of velocity changes. (c) Minimum distances.

Fig. 15. Trajectory of a successful overtaking behavior (red line: the vehicle
trajectory and blue line: the detected lane boundaries.

vehicle will follow the current lane. In addition, the intelligent
vehicle will change to the middle lane or the right lane when
surrounding vehicles do not affect driving in order to facilitate
other vehicles overtaking.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XU et al.: RL APPROACH TO AUTONOMOUS DECISION MAKING OF INTELLIGENT VEHICLES ON HIGHWAYS 11

(a) (b)

Fig. 16. Front views from the autonomous vehicle during the left lane-change behavior. (a) Front view at the starting point for lane change. (b) Front view
at the final stage for left lane-change.

(a) (b) (c)

Fig. 17. Decision and planning outputs during the left lane-change behavior. (a) Starting left lane-change. (b) Middle stage of left lane change. (c) Final
point of left lane-change.

C. Comparison Between SORL Method and MORL Method

In autonomous driving, several related objectives should be
considered, including the safety in heavy traffic and speediness
in light traffic, and smoothness was also important for human
passengers. In this section, the MO-API method was compared
with SORL methods, and the performance of MO-API with
different priorities of objectives was also studied.

There were several strategies for solving MORL problems.
For MORL, the voting strategy is a basic approach to real-
ize a compromise among the three objectives, which was also
named the equal priority (EP) voting. In order to express flex-
ible priorities, the weighted voting method was used in this
paper. We defined two objective-priorities instead of the EP:
1) the SPFP which considered speediness first and 2) SMFP
which considered smoothness first.

In both SPFP and SMFP, safety should always have
a higher priority. Therefore we defined the weight of safety as
0.4 which was equal to the weight of the objective considered
first, and the weight of the rest objective was 0.2. In addition,

optimized policies for the single-objective MDP model and
MO-MDP model were both learned by the MO-API approach
with C-RPI. We repeated the simulation tests for 50 times.
The statistical results were shown in Fig. 14.

D. Real-Time Experiments on the HQ-3 Autonomous Vehicle

In order to test the effectiveness of the MO-API approach
for autonomous decision making, we also performed real-
time decision making experiments on an autonomous vehicle
in highway environments with normal traffic. The HQ-3
autonomous vehicle is equipped with multiple sensors includ-
ing cameras, laser radars, microwave radars, etc. In our
experiments, the decision making system receives the local
map generated by the sensing and mapping system and out-
puts the decision for lane changing or lane keeping. Training
data were collected by making use of the simulation environ-
ment described in Section III.

As shown in Fig. 7, the state vector at each time step is
defined as s = [l, v0, v1, d1, v2, d2, v3, d3, v4, d4], where l

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

(a) (b)

Fig. 18. Front views from the autonomous vehicle during the left lane-change behavior. Front view at the (a) starting point for right lane change and (b) final
stage for right lane-change.

(a) (b) (c)

Fig. 19. Decision and planning outputs during the right lane-change behavior. (a) Starting point. (b) Middle stage. (c) Final point.

is the current lane number of the autonomous vehicle (for left
lane, l = 1 and for right lane l = 2), v0 is the longitudinal
velocity of the autonomous vehicle, v1, d1 are the velocity and
distance of the nearest front vehicle in the right lane, respec-
tively, v2, d2 are the velocity and distance of the nearest rear
vehicle in the right lane, respectively, v3, d3 are the veloc-
ity and distance of the nearest front vehicle in the left lane,
respectively, and v4, d4 denote the velocity and distance of
the nearest rear vehicle in the left lane, respectively. The MO-
API algorithm uses the simulated sample data D = {(xi, ai,
�ri, x′

i, a′
i) |i = 1, 2, . . . ,m} to learn a set of optimized deci-

sion policies which correspond to different objectives. The
aim of the experimental validation is focused on the real-
time performance testing of the learned policies using the
RL approach based on API. Therefore, in our implementation,
a combined scalar reward function is defined as follows: if the
collision probability is higher than a threshold, r = −1000,
otherwise if the vehicle is running on the left lane, r = −0.5,
otherwise r = −||v0−vexp||, where vexp is an expected
velocity.

The sample collection process uses a random decision pol-
icy and uniform distributions to generate samples. In each
episode, the velocities of different vehicles were initialized
within the interval [40, 100 km/h], the distances between the
autonomous vehicle and other front vehicles were initialized
within the interval [10, 150 m], and the distances between the
autonomous vehicle and other rear vehicles were initialized
within the interval [10, 100 m]. The samples were collected
by simulating the autonomous vehicle either on the left lane
or on the right lane. For each case, 45 000 state transition
samples were observed. So, the total number of samples is
90 000. The feature vector for value function approximation
in API is generated from the ALD-based kernel sparsifica-
tion process, which is described in (14). Gaussian kernels are
used for kernel-based feature representation. The width for
Gaussian kernels was selected as σ = 100. The parameters
used for kernel sparsification is μ = 0.4.

After the convergence of the API algorithm, an opti-
mized decision policy was obtained and the policy was
implemented in the real-time decision system of the HQ-3

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XU et al.: RL APPROACH TO AUTONOMOUS DECISION MAKING OF INTELLIGENT VEHICLES ON HIGHWAYS 13

autonomous vehicle. The autonomous driving system of HQ-
3 was tested on a two-lane highway environment with normal
traffic. Fig. 15 shows the trajectory of a complete lane-change
and overtaking decision and control process, where several
other vehicles running on different lanes were detected. It
is shown that the autonomous vehicle can perform lane-
change and overtaking behaviors successfully and smoothly.
Fig. 16(a) and (b) shows the front views from the autonomous
vehicles at the beginning stage and final stage of a left
lane-change behavior, respectively.

Fig. 17 shows the decision and planning outputs of the deci-
sion system, where the local sensing map was also illustrated.
The detected lanes are shown in dotted lines. The rectangles
with arrows illustrate the detected vehicles on the lanes, where
the arrows indicate the estimated moving directions of the
detected vehicles. Fig. 18(a) and (b) shows the front views
from the autonomous vehicles at the beginning stage and final
stage of a right lane-change behavior, respectively. The deci-
sion and planning outputs of the decision system were also
illustrated in Fig. 19. As shown in Fig. 19, based on the deci-
sion outputs of the learned policy, the planning module can
successfully generate safe, and smooth paths for the intelligent
vehicle.

V. CONCLUSION

In this paper, an RL approach with value function approxi-
mation and feature learning was proposed for driving decision-
making of intelligent vehicles. The driving decision making
problem was modeled as an MDP and an MO-API algorithm
was presented. Compared with previous MORL approaches,
the proposed approach used API and value function approx-
imation with feature learning to achieve better learning effi-
ciency. Two feature learning strategies have been introduced
for MO-API. In simulations, a 14-DOF vehicle model and
stochastic traffic flow models were used to generate training
samples and testing the performance of different decision-
making methods. The results have demonstrated the effec-
tiveness of the proposed approach. Real-time decision-making
experiments were also performed for testing the effective-
ness of the RL-based approach. Although the simulation and
experimental results illustrate that the proposed RL approach
can obtain appropriate decision making policies in different
traffic conditions, there are still more works that needs fur-
ther investigations in the future. One interesting problem is to
combine other adaptive dynamic programming and RL meth-
ods [36]–[41] to realize optimized trajectory generation and
tracking control. The other one is to extend the RL-based
decision making approach to more complex traffic conditions.

ACKNOWLEDGMENT

The authors would like to thank the Associate Editor and
the anonymous reviewers for their valuable comments and
suggestions, which greatly improved the quality of this paper.

REFERENCES

[1] A. Niehaus and R.F. Stengel, “Probability-based decision making for
automated highway driving,” IEEE Trans. Veh. Technol., vol. 43, no. 3,
pp. 626–634, Aug. 1994.

[2] D. Bevly et al., “Lane change and merge maneuvers for connected and
automated vehicles: A survey,” IEEE Trans. Intell. Veh., vol. 1, no. 1,
pp. 105–120, Mar. 2016.

[3] D. Zhao et al., “Accelerated evaluation of automated vehicles safety in
lane-change scenarios based on importance sampling techniques,” IEEE
Trans. Intell. Transp. Syst., vol. 18, no. 3, pp. 595–607, Mar. 2017.

[4] R. Schubert, K. Schulze, and G. Wanielik, “Situation assessment for
automatic lane-change maneuvers,” IEEE Trans. Intell. Transp. Syst.,
vol. 11, no. 3, pp. 607–616, Sep. 2010.

[5] M. Ardelt, C. Coester, and N. Kaempchen, “Highly automated driving
on freeways in real traffic using a probabilistic framework,” IEEE Trans.
Intell. Transp. Syst., vol. 13, no. 4, pp. 1576–1585, Dec. 2012.

[6] A. Eskandarian, Ed., Handbook of Intelligent Vehicles. London, U.K.:
Springer-Verlag, 2012.

[7] R. Schubert, “Evaluating the utility of driving: Toward automated
decision making under uncertainty,” IEEE Trans. Intell. Transp. Syst.,
vol. 13, no. 1, pp. 354–364, Mar. 2012.

[8] C. Urmson et al., “Autonomous driving in urban environments: Boss
and the urban challenge,” J. Field Robot., vol. 25, no. 8, pp. 425–466,
2008.

[9] S. Ulbrich and M. Maurer, “Probabilistic online POMDP decision mak-
ing for lane changes in fully automated driving,” in Proc. 16th Int. IEEE
Conf. Intell. Transp. Syst. (ITSC), 2013, pp. 2063–2067.

[10] C. Kim and R. Langari, “Adaptive analytic hierarchy process-based deci-
sion making to enhance vehicle autonomy,” IEEE Trans. Veh. Technol.,
vol. 61, no. 7, pp. 3321–3332, Sep. 2012.

[11] C. R. Baker and J. M. Dolan, “Traffic interaction in the urban challenge:
Putting boss on its best behavior,” in Proc. Int. Conf. Intell. Robots Syst.,
2008, pp. 1752–1758.

[12] J. Wei and J. M. Dolan, “A robust autonomous freeway driving
algorithm,” in Proc. IEEE Intell. Veh. Symp., 2009, pp. 1015–1020.

[13] J. Wei, J. M. Dolan, and B. Litkouhi, “A prediction- and cost function-
based algorithm for robust autonomous freeway driving,” in Proc. IEEE
Intell. Veh. Symp., San Diego, CA, USA, 2010, pp. 512–517.

[14] J. Pérez, V. Milanés, E. Onieva, J. Godoy, and J. Alonso, “Longitudinal
fuzzy control for autonomous overtaking,” in Proc. IEEE Int. Conf.
Mechatronics, Istanbul, Turkey, 2011, pp. 188–193.

[15] R. Schubert and G. Wanielik, “A unified Bayesian approach for object
and situation assessment,” IEEE Intell. Transp. Syst. Mag., vol. 3, no. 2,
pp. 6–19, Jun. 2011.

[16] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[17] L. Busoniu, R. Babuska, B. D. Schutter, and D. Ernst, Reinforcement
Learning and Dynamic Programming Using Function Approximators.
Boca Raton, FL, USA: CRC Press, 2010.

[18] D. C. K. Ngai and N. H. C. Yung, “Automated vehicle overtaking based
on a multiple-goal reinforcement learning framework,” in Proc. IEEE
Intell. Transp. Syst. Conf., Seattle, WA, USA, 2007, pp. 818–823.

[19] D. C. K. Ngai and N. H. C. Yung, “A multiple-goal reinforcement learn-
ing method for complex vehicle overtaking maneuvers,” IEEE Trans.
Intell. Transp. Syst., vol. 12, no. 2, pp. 509–522, Jun. 2011.

[20] R. Zheng, C. Liu, and Q. Guo, “A decision-making method for
autonomous vehicles based on simulation and reinforcement learning,”
in Proc. Int. Conf. Mach. Learn. Cybern. (ICMLC), 2013, pp. 362–369.

[21] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” J. Mach.
Learn. Res., vol. 4, pp. 1107–1149, Jan. 2003.

[22] X. Xu, Z. Huang, D. Graves, and W. Pedrycz, “A clustering-based graph
Laplacian framework for value function approximation in reinforce-
ment learning,” IEEE Trans. Cybern., vol. 44, no. 12, pp. 2613–2625,
Dec. 2014.

[23] S. Doltsinis, P. Ferreira, and N. Lohse, “An MDP model-based reinforce-
ment learning approach for production station ramp-up optimization:
Q-learning analysis,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 44,
no. 9, pp. 1125–1138, Sep. 2014.

[24] N. Wesner, “Multi-objective optimization via visualization,” Econ. Bull.,
vol. 37, no. 2, pp. 1226–1233, 2017.

[25] S. Ruzika and M. M. Wiecek, “Approximation methods in multiobjective
programming,” J. Optim. Theory Appl., vol. 126, no. 3, pp. 473–501,
2005.

[26] T. Erfani and S. V. Utyuzhnikov, “Directed search domain: A method for
even generation of the Pareto frontier in multiobjective optimization,”
J. Eng. Optim., vol. 43, no. 5, pp. 467–484, 2011.

[27] I. Giagkiozis and P. J. Fleming, “Methods for multi-objective
optimization: An analysis,” Inf. Sci., vol. 293, pp. 338–350, Feb. 2015.

[28] P. Vamplew, R. Dazeley, A. Berry, R. Issabekov, and E. Dekker,
“Empirical evaluation methods for multiobjective reinforcement learning
algorithms,” Mach. Learn., vol. 84, nos. 1–2, pp. 51–80, 2011.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

[29] C. Liu, X. Xu, and D. Hu, “Multiobjective reinforcement learning:
A comprehensive overview,” IEEE Trans. Syst., Man, Cybern., Syst.,
vol. 45, no. 3, pp. 385–398, Mar. 2015.

[30] R. A. Howard, Dynamic Programming and Markov Processes.
Cambridge, MA, USA: MIT Press, 1960.

[31] X. Xu, D. Hu, and X. Lu, “Kernel-based least squares policy iteration
for reinforcement learning,” IEEE Trans. Neural Netw., vol. 18, no. 4,
pp. 973–992, Jul. 2007.

[32] S. Mahadevan and M. Maggioni, “Proto-value functions: A Laplacian
framework for learning representation and control in Markov decision
processes,” J. Mach. Learn. Res., vol. 8, pp. 2169–2231, Jan. 2007.

[33] S. J. Bradtke and A. G. Barto, “Linear least-squares algorithms for tem-
poral difference learning,” Mach. Learn., vol. 22, nos. 1–3, pp. 33–57,
1996.

[34] J. Johns, M. Petrik, and S. Mahadevan, “Hybrid least-squares algorithms
for approximate policy evaluation,” Mach. Learn., vol. 76, nos. 2–3,
pp. 243–256, 2009.

[35] Z. Huang, X. Xu, and L. Zuo, “Reinforcement learning with auto-
matic basis construction based on isometric feature mapping,” Inf. Sci.,
vol. 286, pp. 209–227, Dec. 2014.

[36] D. Liu, Q. Wei, and P. Yan, “Generalized policy iteration adaptive
dynamic programming for discrete-time nonlinear systems,” IEEE Trans.
Syst., Man, Cybern., Syst., vol. 45, no. 12, pp. 1577–1591, Dec. 2015.

[37] H. G. Zhang, D. R. Liu, Y. H. Luo, and D. Wang, Adaptive Dynamic
Programming for Control: Algorithms and Stability. London, U.K.:
Springer, 2013.

[38] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive
dynamic programming for feedback control,” IEEE Circuits Syst. Mag.,
vol. 9, no. 3, pp. 32–50, 3rd Quart., 2009.

[39] T. Dierks and S. Jagannathan, “Online optimal control of affine nonlinear
discrete-time systems with unknown internal dynamics by using time-
based policy update,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23,
no. 7, pp. 1118–1129, Jul. 2012.

[40] H. Xu, Q. Zhao, and S. Jagannathan, “Finite-horizon near-optimal output
feedback neural network control of quantized nonlinear discrete-time
systems with input constraint,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 26, no. 8, pp. 1776–1788, Aug. 2015.

[41] H. Kebriaei, A. Rahimi-Kian, and M. N. Ahmadabadi, “Model-based
and learning-based decision making in incomplete information cournot
games: A state estimation approach,” IEEE Trans. Syst., Man, Cybern.,
Syst., vol. 45, no. 4, pp. 713–718, Apr. 2015.

[42] X. Li, X. Xu, and L. Zuo, “Reinforcement learning based overtaking
decision-making for highway autonomous driving,” in Proc. 6th Int.
Conf. Intell. Control Inf. Process. (ICICIP), 2015, pp. 336–342.

[43] J. Liu, X. Xu, Z. Huang, and C. Lian, “Model-free multi-kernel learn-
ing control for nonlinear discrete-time systems,” Int. J. Robot. Autom.,
vol. 32, no. 5, pp. 538–550, 2017.

Xin Xu (M’07–SM’12) received the B.S. degree
in electrical engineering from the Department of
Automatic Control, National University of Defense
Technology (NUDT), Changsha, China, in 1996,
where he received the Ph.D. degree in con-
trol science and engineering from the College of
Mechatronics and Automation, NUDT, in 2002.

He has been a visiting professor in Hong
Kong Polytechnic University, University of Alberta,
University of Guelph, and the University of
Strathclyde, U.K., respectively. He is currently a

Professor with the College of Mechatronics and Automation, NUDT, China.
He has co-authored more than 160 papers in international journals and confer-
ences, and co-authored four books. His research interests include intelligent
control, reinforcement learning, approximate dynamic programming, machine
learning, robotics, and autonomous vehicles.

Dr. Xu received the Fork Ying Tong Youth Teacher Fund of China in 2008
and the 2nd class National Natural Science Award of China in 2012. He
serves as the co-Editor-in-Chief of Journal of Intelligent Learning Systems and
Applications. He is an Associate Editor of Information Sciences, Intelligent
Automation and Soft Computing, and Acta Automatica Sinica. He was a Guest
Editor of the International Journal of Adaptive Control and Signal Processing
and International Journal of Social Robotics. He is a Member of the
IEEE CIS Technical Committee on Approximate Dynamic Programming and
Reinforcement Learning (ADPRL) and the IEEE RAS Technical Committee
on Robot Learning.

Lei Zuo received the Bachelor’s degree in electrical
engineering and the Ph.D. degree in automation both
from the College of Mechatronics and Automation,
National University of Defense Technology, China,
in 2009 and 2016, respectively.

He is currently a Lecturer with the College of
Electronics Technology, National University of
Defense Technology, China. His research interests
include reinforcement learning, approximate
dynamic programming (ADP), and autonomous
vehicles. He has coauthored more than 10 papers in

international journals and conferences.

Xin Li received the Master’s degree in automation
from the College of Mechatronics and Automation
(CMA), NUDT, China, in 2015. He is currently
working toward the Ph.D. degree at the Institute of
Navigation Technology, CMA, NUDT. His research
interests focus on computer vision and unmanned
aerial vehicles.

Lilin Qian received both the Bachelor’s degree
and Master’s degree in electrical engineering and
automation from Aviation University Air Force,
China, in 2012 and 2015, respectively. He is cur-
rently working toward the Ph.D. degree at the
Institute of Unmanned Systems, College of Artificial
Intelligence, NUDT, China.

His research interests include reinforcement learn-
ing, trajectory planning, behavior decision, and
autonomous vehicles.

Junkai Ren received the Master’s degree in con-
trol science and engineering from the College of
Mechatronics and Automation, National University
of Defense Technology (NUDT), China, in 2017.
He is currently working toward the Ph.D. degree
from the Institute of Unmanned Systems, NUDT. His
research interests include machine learning, robot
control, and autonomous vehicles.

Zhenping Sun received the Ph.D. degree in pattern
recognition and intelligent system from the College
of Mechatronic Engineering and Automation,
National University of Defense Technology,
Changsha, China, in 2004.

He is currently an Associate Professor with
the National University of Defense Technology.
His research activities include the hardware and
software architecture design for autonomous
ground vehicles. His research interests include
robotic motion planning and intelligent control of
autonomous vehicles.

