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Content-Based Top-N Recommendation using
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Yifan Chen1, Xiang Zhao1, Junjiao Gan2, Junkai Ren1, and Yang Fang1
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Abstract. Top-N recommender systems have been extensively studied.
However, the sparsity of user-item activities has not been well resolved.
While many hybrid systems were proposed to address the cold-start prob-
lem, the profile information has not been sufficiently leveraged. Further-
more, the heterogeneity of profiles between users and items intensifies
the challenge. In this paper, we propose a content-based top-N recom-
mender system by learning the global term weights in profiles. To achieve
this, we bring in PathSim, which could well measures the node similarity
with heterogeneous relations (between users and items). Starting from
the original TF-IDF value, the global term weights gradually converge,
and eventually reflect both profile and activity information. To facilitate
training, the derivative is reformulated into matrix form, which could
easily be paralleled. We conduct extensive experiments, which demon-
strate the superiority of the proposed method.

1 Introduction

Recommender systems typically leverage two types of signals to effectively rec-
ommend items to users - user activities, and content matching between user
and item profiles. Depending on what to use, the recommendation models in
literature are usually categorized into collaborative filtering, content-based and
hybrid models [1]. In real-world applications, solely employing collaborative fil-
tering or content-based models can not achieve desirable results, as is often the
case that single source of information tends to be incomplete.

To better illustrate, we motivate the following example in architecture. Re-
cently, Vanke, a leading real-estate corporation in China, started a Uber-For-
Architects project, namely NOSPPP, which tries to match architects with appro-
priate projects based on previous project information of architects and firms.
During the running of NOSPPP, the data collected are two-fold, with the partici-
pated projects and the resumes, respectively. In terms of recommender system,
the former is named “feedback” (of users) while the latter is referred as “pro-
files” (of items). Due to the sparsity of feedback, collaborative filtering based
recommenders would face the cold-start problem, and hence, we have to resort
to content-based or hybrid models [9]. However, unlike the applicant-job sce-
nario therein, where the profiles of users and jobs could well match, the profiles
of architects and projects describe things in two different worlds. Specifically,



the profiles of architects presents the working experience and skills, while the
profiles of projects tells the area, the interior and exterior constructions, etc.
This is rational, as designing architectures is in the form of art, where it is hard
to specify the conditions or requirements through decomposition. In response
to applications like NOSPPP, we explore recommendation utilizing both sparse
feedback and heterogeneous profiles.

In this paper, we exploit a hybrid recommendation method that ensembles
both sources of information. For ease of exposition, we consider the case that
auxiliary information exists only on the side of items, and propose a item-based
top-N recommendation algorithm 1. Classic item-based collaborative filtering
uses the direct link information for recommendation without diffusing the influ-
ence of other user-item links. By regarding user-item interactions as a bi-type in-
formation network, we observe that such influence can be captured by item node
similarity, where PathSim [18] via meta-path is served. Moreover, while content
matching between heterogeneous profiles of users and items does not produce
explicable results, methods including [23, 22, 19, 21, 20] suggest high similarity
among objects within the same subspace, thus we contend that it can be em-
ployed for matching profiles between item-item or user-user, since profiles of same
type is naturally homogeneous. A standard way to measure similarity between
two profiles is computing the cosine similarity of the two bags of words, and
each word is weighted by term frequency tf (within the document) × inverted
document frequency idf (of the term within the corpus). While the local term
frequency could be computed offline, it has been suggested [9] that the global
term weights idf requires further optimization to achieve better precision. Thus,
we optimize the global term weights with the guidance of the similarity from
PathSim.

In summary, the major contribution of the paper is a novel hybrid recom-
mendation method, the overview of which is outlined as follows:

(1) Derive item similarity measured by meta-paths using PathSim;

(2) Optimize the global term weights guided by PathSim; and

(3) Recommend top-N items based on nearest neighbor collaborative filtering.

Organization. Section 2 discusses related work. We present the method for
deriving initial similarity between items in Section 3, and then, introduce the
learning method for optimizing global term weights in Section 4. Experiment
results are in Section 5, followed by conclusion in Section 6.

2 Related Work

Top-N recommender systems have been extensively studied during the last few
years, which could be classified into three categories.

1 Without loss of generality, it is straightforward to extend the idea to the case of
auxiliary information on both sides of users and items.
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The first category is neighborhood-based collaborative filtering, which could
be further classified into three classes: item-based and user-based. Given a cer-
tain user, user-based-nearest-neighbor (userkNN) [12, 7, 15] first identifies a set of
similar users, and then recommends top-N items based on what items those sim-
ilar users have purchased. Similarly, item-based-nearest-neighbor (itemkNN) [16]
identifies a set of similar items for each of the items that the user has purchased,
and then recommends top-N items based on those similar items.There are plenty
of ways to measure user/item similarity, e.g., Pearson correlation, cosine simi-
larity, and so forth.

The second category is model-based collaborative filtering, in which the latent
factor models have achieved the state-of-the-art performance. Cremonesi et.al.
proposed a simple model-based algorithm PureSVD [6], where users’ features and
items’ features are represented by the principle singular vectors of the user-item
matrix. Koren proposed the well-known SVD++ model [6]. Wu applied Reg-
ularized Matrix Factorization (RMF), Maximum Margin Matrix Factorization
(MMMF), and Nonnegative Matrix Factorization (NMF) to recommender sys-
tems [24]. Weighted Regularized Matrix Factorization (WRMF) was introduced
by Hu et al. [10]. The key idea of these methods is to factorize the user-item
matrix to represent the users preferences and items characteristics in a common
latent space, and then estimate the user-item matrix by the dot product of user
factors and item factors. All these methods assume that only a few variables
impact users preference and items features, which means the low-rank structure
of user-item matrix.

Another model-based method, SLIM, proposed by Ning et. al. [13], predicts
the user-item matrix by multiplying the observed user-item matrix by the aggre-
gation coefficient matrix. SLIM estimates the coefficient matrix by learning from
the observed user-item matrix with a simultaneous regression model. Specifically,
it introduces sparsity with ℓ1-norm regularizer into the regularized optimization
and formed an elastic net problem to benefit from the smoothness of ℓ2-norm and
the sparsity of ℓ1-norm. Later, plenty of research has been done based on SLIM.
SSLIM [14] integrates the side information. LorSLIM [4] involves the nuclear-
norm to induce the low-rank property of SLIM. HOSLIM [5] uses the potential
higher-order information to generate better recommendation.

The last category is hybrid methods. Hybrid method is used to combine the
virtue of different recommender algorithms to generate better performance. A
hybrid method was used to deal with the cold-start scenarios by mapping entities
(user/item attributes) to latent features of a matrix factorization model [8].

3 Initializing Item Similarity

This section present the method for measuring item similarity.

3.1 Preliminaries

Definition 1 (Information Network). An information network is defined as
a directed graph G = (V,E) with an object type mapping function σ : V → A
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and a link type mapping function φ : E → R, where each object v ∈ V belongs
to one particular object type σ(v) ∈ A, each link e ∈ E belongs to a particular
relation φ(e) ∈ R, and if two links belong to the same relation type, the two links
share the same starting object type as well as the ending object type. Note that,
if a relation exists from type A to type B, denoted as ARB, the inverse relation
R−1 holds naturally for BR−1A. R and its inverse R−1 are usually not equal,
unless the two types are the same and R is symmetric. When the types of objects
|A| > 1 or the types of relations |R| > 1, the network is called heterogeneous
information network; otherwise, it is a homogeneous information network.

Definition 2 (Network Schema). The network schema, denoted as TG =
(A,R), is a meta template for a heterogeneous network G = (V,E) with the
object type mapping σ : V → A and the link mapping ς : E → R, which is a
directed graph defined over object types A, with edges as relations from R.

Definition 3 (Meta-path). A meta-path P is a path defined on the graph of

network schema TG = (A,R), and is denoted in the form of A1
R1→A2

R2→ . . .
Rl→Al+1.

For simplicity, the meta-path can be denoted by the type names if there exist no
multiple relations between the same pair of types: P = (A1A2 . . . Al+1). A path
p = (a1a2 . . . al+1) between a1 and al+1 is said to follow the meta-path P, if
∀i, ai ∈ Ai and each link ei = ⟨aiai+1⟩ belongs to each relation Ri in P. These
paths are called path instances of P, denoted as p ∈ P.

In the following, meta-path is confined to symmetric, namely round trip meta-
paths in the form of P = (PlP−1

l ).

Definition 4 (Commuting Matrix). Given a network G = (V,E) and its
network schema TG, a commuting matrix M for a meta-path P = (A1A2 . . . Al)
is defined as M = WA1A2WA2A3WAl−1Al

, where WAiAj is the weight matrix
between type Ai and type Aj.

Definition 5 (PathSim). Given a symmetric meta-path P, PathSim between
two objects vi and vj of the same type is:

sij =
2Mij

Mii +Mjj
, (1)

where Mij represents the ith row and jth column element of matrix M .

3.2 Measuring Item Similarity

To measure item similarity through PathSim, we first define the meta-path in
the form of Pn = (A(BA)n) (the mined frequent patterns [3]). For instance,
n = 1 corresponds to P1 = (ABA) and n = 2 corresponds to P2 = (ABABA).
It is easy to verify the symmetry of Pn and thus PathSim can be applied. The
associated commuting matrix for Pn is M = (WABWBA)

n and consequently the
similarity between item i and item j can be computed by Equation (1).
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Suppose we define N meta-paths P1,P2, . . . ,PN , with the corresponding sim-
ilarities s1, s2, . . . , sN , the overall similarity should be measured as the weighted
aggregation, e.g. s =

∑N
n=1 αnsn, where

∑N
n=1 αn = 1. As is suggested in [18]

that the meta-path with relatively short length is good enough to measure simi-
larity, and a long meta-path may even reduce the quality, we set smaller weights

for longer meta-paths. We naturally set the weights as αn = 2N−n

2N−1
. We further

denote Sp for the matrix of PathSim, where spij represents the element of Sp in

the ith row and jth column.

4 Optimizing Profile Similarity

We prompt to measure the item similarity based on the profiles. Prior to the
discussion, we first list the notations used in this section in Table 1. Note that
vectors and matrices are made bold.

Table 1. Table of Notations

Nu Number of users

Nv Number of items

Nw Number of terms

λ ℓ2 norm weight

Sf , sfij similarity derived from item profiles

Sp, spij similarity derived form pathsim

W l,wl
i, w

l
ik local term weights

wg, wg
ik global term weights

w, wk the weights to learn, where wk = (wg
k)

2

P ,pk the normalized tf × idf weights

Each profile contains rich text to describe the feature. Thus more effective
content analysis methods and text similarity measures are crucial for the recom-
mendation. Most designed recommender systems involving text similarity mea-
sure applied cosine similarity of two bags of words, where each word is weighted
by tf × idf [2, 17]. Nevertheless, it is possible to go beyond the definition of
tf × idf , where tf represents the local term weights and idf the global term
weights. While tf could be derived offline with various methods, idf requires
further optimization as suggested by [9]. Thus the global term could be opti-
mized with the guidance of PathSim and the similarity derived from profiles
could be calculated by the following Equation:

sfij =
di · dj

∥di∥2∥dj∥2
, (2)

where ∥ · ∥2 is the ℓ2 norm of a vector, and di represents the term vector, each
dimension represents a term, and the value in each dimension represents the
weight of the term. di could be decomposed as wl

i ◦ wg, where wg
i denotes
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for the local weights for item i. wg denotes for the global term weights, which
is initially set with the original Inverted Document Frequency, and optimized
gradually. ◦ is a binary operation, conducting the element-wise product of two
vectors, thus the result is also a vector. By letting wk = (wg

k)
2, we could further

formalize Equation 2 as follows:

sfij =

∑t
k=1 w

l
ikw

l
jkwk[∑t

k=1(w
l
ik)

2wk

] 1
2
[∑t

k=1(w
l
jk)

2wk

] 1
2

,

and the partial derivative could be derived as:

∂sfij
∂wk

=
1

∥di∥22∥dj∥22

{
wl

ikw
l
jk∥di∥2∥dj∥2 −

[
∥dj∥2
2∥di∥2

(wl
ik)

2 +
∥di∥2
2∥dj∥2

(wl
jk)

2

]
di · dj

}
=

wl
ikw

l
jk

∥di∥2∥dj∥2
−

sfij
2

[
(wl

ik)
2

∥di∥22
+

(wl
jk)

2

∥dj∥22

]
.

To optimize the global term weights, we should define the loss function to
measure the difference between spij and sfij . We develop the squared loss function
and the associated optimization methods.

4.1 Squared Error Loss Function

Due to the sparsity of the user-item information network, we could also expect
the sparsity of similarities measured by PathSim. If item i can not reach item j
through the bi-type information network, according to Equation 1, sij = 0.

In this section, the loss function is defined as the squared error, given by

L =

Nv∑
i=1

Nv∑
j=1

(sfij − spij)
2 = ∥Sf − Sp∥2F ,

based on which, we could minimize the following objective function to optimize
the global term frequency:

min
w

J =
1

2
∥Sf − Sp∥2F +

λ

2
∥w∥22

s.t. w ≥ 0
(3)

where ∥ · ∥F is the Frobenius norm, which is actually the squared sum of all
elements of the matrix. w stands for the vector of wk, and we penalize ℓ2 norm
on the global term weights w to avoid over fitting and sparsity result. Sp is
denoted for PathSim matrix, whereas Sf for the profile similarity matrix. We
reformulate the problem into the following element-wise form, to facilitate the
deduction of partial derivative over wk, e.g.,

∂J
∂wk

.
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min
wk

J =
1

2

Nv∑
i=1

Nv∑
j=1

(sfij − spij)
2 +

λ

2

Nw∑
i=1

w2
k

wk ≥ 0, k = 1, . . . , Nw

Solution. The partial derivative is given in Equation 4.

∂J

∂wk
=

Nv∑
i=1

Nv∑
j=1

(sfij − spij)

{
wl

ikw
l
jk

∥di∥2∥dj∥2
− s̃ij

2

[
(wl

ik)
2

∥di∥22
+

(wl
jk)

2

∥dj∥22

]}
+ λwk. (4)

We further define qij = sfij − spij , pik =
wl

ij

∥di∥2
and rij = (sfij − spij)s

f
ij . Thus

we have:

Nv∑
i=1

Nv∑
j=1

(sfij − spij)
wl

ikw
l
jk

∥di∥2∥dj∥2
=

Nv∑
i=1

Nv∑
j=1

qijpikpjk = pT
kQpk

Nv∑
i=1

Nv∑
j=1

(sfij − spij)
sfij
2

[
(wl

ik)
2

∥di∥22
+

(wl
jk)

2

∥dj∥22

]
=

Nv∑
i=1

Nv∑
j=1

1

2
rij(p

2
ik + p2jk)

=

Nv∑
i=1

Nv∑
j=1

rijp
2
ik = pT

kRpk.

where pk is a vector of pik, Q is Nv × Nv matrix of qij and R is a diagonal
matrix with the i-th element of principal diagonal equals

∑
j rij . By defining

L = Q−R, we find the following close form of derivative:

∂J

∂wk
= pT

kLpk + λwk.

It could be further represented into the matrix form:

∂J

∂w
= diag(P TLP ) + λw, (5)

where diag(·) extracts the principal diagonal and form as a vector.
Following the common practices for top-N recommendation [11], the loss

function is computed over all entries of S. The summation above contains n×n
terms, namely all pairwise items in the dataset. To ensure good performance
while achieve reasonable training time, the algorithm is paralleled by CUDA.

5 Experimental Evaluation

To evaluate our proposed method, extensive experiments have been conducted.
However, due to space limitation, we only present part of the results.
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5.1 Experiment Setup

The results reported in this section is based on the NIPS dataset2. It contains
paper-author and paper-word matrices extracted from co-author network at the
NIPS conference over 13 volumes. We regard authors as users, papers as items
and the contents of papers as the profile of items. Thus the data has 2037 users
(authors) and 1740 items (papers), where 13649 words have been extracted from
the corpus of item profiles. The content of the papers is preprocessed such that
all words are converted to lower case and stemmed and stop-words are removed.
One may note that NIPS dataset is very sparse, that is, some author may publish
only one or two papers, which shows the importance of properly leveraging side
information for recommendation.

We applied 5-time Leave-One-Out cross validation (LOOCV) to evaluate our
proposed method. In each run, each of the dataset is split into a training set and
a testing set by randomly selecting one of the non-zero entries of each user and
placing it into the testing set. The training set is used to train a model, then for
each user a size-N ranked list of recommended items is generated by the model.
We varies N as 5,10,15,20 to compare the result difference. Our method has two
parameters, np and λ. np measures the length of meta-path and λ measures the
degree of regularization.

The recommendation quality is measured using Hit Rate (HR) and Average
Reciprocal Hit Rank (ARHR) [7]. HR is defined as

HR =
#hits

#users
,

where #users is the total number of users and #hits is the number of users
whose item in the testing set is recommended (i.e., hit) in the size-N recommen-
dation list. A second measure for evaluation is ARHR, which is defined as

ARHR =
1

#users

#hits∑
i=1

1

pi
,

where if an item of a user is hit, p is the position of the item in the ranked
recommendation list. ARHR is a weighted version of HR and it measures how
strongly an item is recommended, in which the weight is the reciprocal of the
hit position in the recommendation list.

We implement our algorithm in C++. As our method involves optimizing
the global weights over the whole vocabulary of item profiles, to expedite the
training efficiency, the training process is paralleled in GPU and implemented
by CUDA3. All experiments are done on a machine with 4-core Intel i7-4790
processor at 3.60GHz and Nvidia GeForce GTX TITAN X graphics card.
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5.2 Effect of Initial Value

We first evaluate the influence of initial value we set for global weights on the
performance. We compare two settings, random and idf. The initial value is
randomly set in the first setting while it is set as the value of inverted document
frequency in the latter one. Here λ is set as 0.01 and np as 1. The result is
reported in Figure 1, which shows the superiority of idf over random. The result
demonstrates the usefulness of side information in this dataset and we set the
initial value of global term as idf thereafter.

5.3 Effect of Parameters

In this set of experiments, the validation is conducted to select the most suitable
parameters. λ is varied from 0 to 0.05 and stepped 0.005 and np is set as 1,2,3.
We draw the lines in Figure 2. Three lines are drawn to distinguish np = 1 (red
line),np = 2 (blue line) and np = 3 (green line) respectively. The result shows
that np should be set 1 to achieve better performance. This result is consistent

2 http://www.cs.nyu.edu/˜roweis/data.html
3 http://www.nvidia.cn/object/cuda-cn.html
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with [18], which suggests shorter length of meta-path is good enough to measure
similarity.

As Figure 2 depicts the performance along with λ, we find the best value as
0.01 for np = 1, 0.02 for np = 1 and 0.025 for np = 3. It has also been shown that
the method performs more robustly when np = 1 while it varies dramatically
with λ when np > 1. Based on the observation, we finally pick np and λ as 1
and 0.01 for the rest of the experiments.

5.4 Recommendation for Different Top-N
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Fig. 3. Performance of Proposed Method

By setting the global term as the inverted document frequency, and letting
λ = 0.01, we evaluate the top-N recommendation performance, the result of
which is illustrated in Figure 3. Obviously, with the increase of N , the per-
formance improves. We also compare the different setting of np, which further
demonstrates np = 1 could be a better choice. We also found in this set of ex-
periments that when N increase from 5 to 10, the performance shows relatively
higher improvement.

5.5 Comparison of Algorithms

We finally compares our method with other algorithms in this set of experi-
ments. As top-N recommendation methods have been extensively studied, we
compare only with some state-of-the-art methods, e.g. Slim [13] and LCE [17].
We also incorporate the pure tfidf method to calculate the item similarity for
recommendation. To distinguish, we name our proposed method as Mist (Meta
path based item similarity to learn global term weights). We depict the result in
Figure 4, where all the compared algorithms were optimized to the best settings.

Figure 4(a) shows the recommendation of Mist is consistently better than
other three methods. Note that Slim has the worst performance, this could be
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Fig. 4. Algorithm Comparison

attributed to the sparsity of dataset. LCE also took advantage of item profiles,
thus it has achieved good performance. It is also worth noting that the pure tfidf
shows relatively acceptable results and Mist could be regarded as the collabora-
tive optimized tfidf.

When it comes to ARHR, showing in Figure 4(b), Mist also behaves the best,
which was followed by LCE, tfidf and Slim. In conclusion, the learned global term
weights can well capture both structural and textual information.

6 Conclusion

In this paper, we proposed a content-based top-N recommender system by lever-
aging item profiles. We first employed PathSim to measure the item similarity
on the top of heterogeneous relations between users and items, and then opti-
mized the global term weights towards the PathSim similarities. To facilitate
training, the derivation was reformulated into matrix form, which could easily
be paralleled. We conducted extensive experiments, and the experimental results
demonstrate the superiority of the proposed method.
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1. Balabanović, M., Shoham, Y.: Fab: content-based, collaborative recommendation.
Communications of the ACM 40(3), 66–72 (1997)

2. Barjasteh, I., Forsati, R., Masrour, F., Esfahanian, A., Radha, H.: Cold-start item
and user recommendation with decoupled completion and transduction. In: Pro-
ceedings of the 9th ACM Conference on Recommender Systems, RecSys 2015,
Vienna, Austria, September 16-20, 2015. pp. 91–98 (2015)

3. Chen, Y., Zhao, X., Lin, X., Wang, Y.: Towards frequent subgraph mining on single
large uncertain graphs. In: 2015 IEEE International Conference on Data Mining,
ICDM 2015, Atlantic City, NJ, USA, November 14-17, 2015. pp. 41–50 (2015)

4. Cheng, Y., Yin, L., Yu, Y.: LorSLIM: Low rank sparse linear methods for top-n
recommendations. In: 2014 IEEE International Conference on Data Mining, ICDM
2014, Shenzhen, China, December 14-17, 2014. pp. 90–99 (2014)

11



5. Christakopoulou, E., Karypis, G.: HOSLIM: higher-order sparse linear method
for top-n recommender systems. In: Advances in Knowledge Discovery and Data
Mining - 18th Pacific-Asia Conference, PAKDD 2014, Tainan, Taiwan, May 13-16,
2014. Proceedings, Part II. pp. 38–49 (2014)

6. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms
on top-n recommendation tasks. In: Proceedings of the 2010 ACM Conference on
Recommender Systems, RecSys 2010, Barcelona, Spain, September 26-30, 2010.
pp. 39–46 (2010)

7. Deshpande, M., Karypis, G.: Item-based top-N recommendation algorithms. ACM
Trans. Inf. Syst. 22(1), 143–177 (2004)

8. Gantner, Z., Drumond, L., Freudenthaler, C., Rendle, S., Schmidt-Thieme, L.:
Learning attribute-to-feature mappings for cold-start recommendations. In: ICDM
2010, The 10th IEEE International Conference on Data Mining, Sydney, Australia,
14-17 December 2010. pp. 176–185 (2010)

9. Gu, Y., Zhao, B., Hardtke, D., Sun, Y.: Learning global term weights for content-
based recommender systems. In: Proceedings of the 25th International Conference
on World Wide Web, WWW 2016, Montreal, Canada, April 11 - 15, 2016. pp.
391–400 (2016)

10. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback
datasets. In: Proceedings of the 8th IEEE International Conference on Data Mining
(ICDM 2008), December 15-19, 2008, Pisa, Italy. pp. 263–272 (2008)

11. Kabbur, S., Ning, X., Karypis, G.: FISM: factored item similarity models for top-n
recommender systems. In: The 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA, August
11-14, 2013. pp. 659–667 (2013)

12. Karypis, G.: Evaluation of item-based top-n recommendation algorithms. In: Pro-
ceedings of the 2001 ACM CIKM International Conference on Information and
Knowledge Management, Atlanta, Georgia, USA, November 5-10, 2001. pp. 247–
254 (2001)

13. Ning, X., Karypis, G.: SLIM: sparse linear methods for top-n recommender sys-
tems. In: 11th IEEE International Conference on Data Mining, ICDM 2011, Van-
couver, BC, Canada, December 11-14, 2011. pp. 497–506 (2011)

14. Ning, X., Karypis, G.: Sparse linear methods with side information for top-n rec-
ommendations. In: Sixth ACM Conference on Recommender Systems, RecSys ’12,
Dublin, Ireland, September 9-13, 2012. pp. 155–162 (2012)

15. Papagelis, M., Plexousakis, D.: Qualitative analysis of user-based and item-based
prediction algorithms for recommendation agents. Engineering Applications of Ar-
tificial Intelligence 18(7), 781–789 (2005)

16. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: An open
architecture for collaborative filtering of netnews. In: CSCW ’94, Proceedings of
the Conference on Computer Supported Cooperative Work, Chapel Hill, NC, USA,
October 22-26, 1994. pp. 175–186 (1994)

17. Saveski, M., Mantrach, A.: Item cold-start recommendations: learning local collec-
tive embeddings. In: Eighth ACM Conference on Recommender Systems, RecSys
’14, Foster City, Silicon Valley, CA, USA - October 06 - 10, 2014. pp. 89–96 (2014)

18. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: PathSim: Meta path-based top-k
similarity search in heterogeneous information networks. PVLDB 4(11), 992–1003
(2011)

19. Wang, Y., Lin, X., Wu, L., Zhang, W.: Effective multi-query expansions: Robust
landmark retrieval. In: Proceedings of the 23rd Annual ACM Conference on Multi-

12



media Conference, MM ’15, Brisbane, Australia, October 26 - 30, 2015. pp. 79–88
(2015)

20. Wang, Y., Lin, X., Wu, L., Zhang, W., Zhang, Q.: Exploiting correlation consensus:
Towards subspace clustering for multi-modal data. In: Proceedings of the ACM
International Conference on Multimedia, MM ’14, Orlando, FL, USA, November
03 - 07, 2014. pp. 981–984 (2014)

21. Wang, Y., Lin, X., Wu, L., Zhang, W., Zhang, Q.: LBMCH: learning bridging
mapping for cross-modal hashing. In: Proceedings of the 38th International ACM
SIGIR Conference on Research and Development in Information Retrieval, Santi-
ago, Chile, August 9-13, 2015. pp. 999–1002 (2015)

22. Wang, Y., Lin, X., Wu, L., Zhang, W., Zhang, Q., Huang, X.: Robust subspace
clustering for multi-view data by exploiting correlation consensus. IEEE Trans.
Image Processing 24(11), 3939–3949 (2015)

23. Wang, Y., Zhang, W., Wu, L., Lin, X., Zhao, X.: Unsupervised metric fusion over
multiview data by graph random walk-based cross-view diffusion. IEEE Transac-
tions on Neural Networks and Learning Systems (2015)

24. Wu, M.: Collaborative filtering via ensembles of matrix factorizations. In: Proceed-
ings of KDD Cup and Workshop. vol. 2007 (2007)

13

View publication statsView publication stats

https://www.researchgate.net/publication/304425638

